【中2数学】確率問題の解き方がわかる5ステップ

Sponsored Link

確率の問題の解き方がわからない!!

こんにちは!この記事をかいているKenだよ。チャーハンは万能だね。

 

確率の問題ってむずいよね??

場合の数をかぞえたり、

樹形図をかいてみたり・・・・

なんだろう、

大忙しだ。

っていうか、解き方がよくわからないときが多いはず。

 

そこで今日は、

中学数学でつかえる確率問題の解き方を5ステップで解説していくよ。

テスト前に参考にしてみてね。

Sponsored link

 

 

確率の問題の解き方がわかる5ステップ

確率の問題は5ステップでとけるよ。

  1. 樹形図をかく
  2. すべての場合の数を調べる
  3. あることがらの場合の数を調べる
  4. 確率を公式で計算
  5. 約分する

 

つぎの例題で解き方を解説していくね^_^

 

例題

A・B・Cの3枚のカードを並べるとき、BとCが隣り合わせになる確率を求めよ。

確率問題 解き方

 

 

Step1. 樹形図をかく!

まず樹形図をかいてみよう。

中学数学では場合の数を調べる方法は、

樹形図しか、ない。

だから、

めんどいかもだけど樹形図をかいてみよう。

 

カードA・B・Cの並べ方はつぎのようになるよ。

 

確率問題 解き方

 

>>樹形図の書き方はこちら

 

 

Step2. 「すべての場合の数」を数える!

樹形図から「すべての場合の数」を調べよう。

いちばん右の「実の数」を数えればいいんだ。

Sponsored link
場合の数 調べ方

例題の樹形図では「6」だね??

 

確率の解き方

 

つまり、

すべての場合の数は「6通り」あるってことさ。

 

 

Step3. 「あることがら」の場合の数をしらべる!

「求めたいことがら」の場合の数をしらべよう。

 

例題でいうと、

BとCが隣り合わせになる場合の数

をしらべればいいんだ。

 

樹形図をみてみると、

4通りってことがわかるね。

 

確率問題 解き方

 

 

 

Step4. 公式で確率を計算!

あとは確率の公式で計算するだけ。

あることがらAが起きる確率は、

(Aが起きる場合の確率) = (ことがらAが起きる場合の数)÷(すべての場合の数)

だったよね??

確率の求め方 公式 計算式

これを使おう。

 

例題でいうと、

  • BとCが隣り合わせになる場合の数:4
  • カードの並べ方すべての場合の数:6

だ。

 

ってことは確率の計算式をつかえば、

(BとCが隣り合わせになる確率)

=(BとCが隣り合わせになる数)/(すべての場合の数)

= 4/6

になるはず。

Sponsored link
確率の解き方 

 

Step5. 約分する!

最後に約分しよう。

約分しなくても間違えじゃない。

だけど、先生によっては×にされるかもしれない

約分して分数を簡単にしよう

 

例題の確率は、

6分の4

だったよね??

こいつを約分すると、

3分の2になる。

 

確率 解き方

 

これがきれいな確率の答えだよ^^

 

 

 

 

まとめ:「約分」までが確率の問題の解き方!

帰るまでが遠足

ってよくいうよね。

だけど、確率では、

約分までが確率だよ。

もう一度約分できるか疑ってみよう!

そんじゃねー

Ken

勉強好きの元塾講師。Qikeruの編集・執筆をしています。学校の勉強をわかりやすく面白くしたいという想いでサイトを始めました。

LINEでの個別指導をご希望の方はこちらから

Sponsored Link

20 個の質問と回答

  • もうすぐ中間テストがあるのですが、私も確率の問題が解けません!
    特に樹形図の書き方が、よくわかりません。授業でもあまり意味がわかりません。細かく教えて下さい!
    お願いします!!

  • >もうすぐ中間テストがあるのですが、私も確率の問題が解けません!
    特に樹形図の書き方が、よくわかりません。授業でもあまり意味がわかりません。細かく教えて下さい!
    お願いします!!

    樹形図のかきかたは練習しまくって覚えよう。
    確率の問題はある程度パターンが決まってるから、問題をたくさん解くの大事

  • あるテキストの問題です、
    「ある花壇に、3つの区切りがあり、赤、白、黄色の花の種が1つずつあります。
    しかし、種を全て落としてしまい、見分けがつかなくなってしまいました。
    そこで、右、真ん中、左の3つの区切りに1つずつ植えることにしました。
    この時、真ん中に黄色の花が咲く確率を求めなさい。」
    ↑はどうやって解けばいいでしょうか、授業などでも全く取り扱ってなかったタイプの問題です

  • >ある花壇に、3つの区切りがあり、赤、白、黄色の花の種が1つずつあります。
    しかし、種を全て落としてしまい、見分けがつかなくなってしまいました。
    そこで、右、真ん中、左の3つの区切りに1つずつ植えることにしました。
    この時、真ん中に黄色の花が咲く確率を求めなさい。

    真ん中に黄色が来るパターンは、
    赤黄白
    白黄赤
    の2パターンだね。赤黄白を並び替えるすべての場合の数を計算してそいつでこの場合の数を割れば良さそう

  • 5本のうち,あたりが2本はいっているくじがあり、このくじを、A,Bの2人がこの順に1本ずつ引くときの樹形図の作り方をご教示ください。

  • >5本のうち,あたりが2本はいっているくじがあり、このくじを、A,Bの2人がこの順に1本ずつ引くときの樹形図の作り方をご教示ください。

    あたりを◯、ハズレを×として樹形図を書いてみよう。
    Aを1つ目、Bを2つ目にかいて行こうぜ。

  • 右の図のように正方形ABCDの頂点Aの上に点Pがある。一個のサイコロを投げ、出た目と同じ数だけ頂点を矢印の向きに点Pが移動する。サイコロを2回投げた時点Pが頂点Bの上にある確率を求めよ。

  • 箱の中に -1,2,-3,4,-5 の数が一つずつ書かれた五枚のカードが入っている。
    この箱の中から同時に3枚のカードを取り出すとき、取り出したカードに書かれた数の積が負の数となる確率を求めなさい。

    解説には3枚のカードの全部の取り出し方は、取り出さない2枚のカードの選び方と等しく、10通りある。
    と書かれているのですが、理解できなかったので、詳しく教えて欲しいです。よろしくお願いします。

  • >右の図のように正方形ABCDの頂点Aの上に点Pがある。一個のサイコロを投げ、出た目と同じ数だけ頂点を矢印の向きに点Pが移動する。サイコロを2回投げた時点Pが頂点Bの上にある確率を求めよ。

    2回投げてBに来るってことは、
    でための合計が5、もしくは9の場合ってことね。
    こいつらの場合の数を数えて確率を求めてみよう。サイコロ2つのパターンは表を書くと数えやすいよ

  • >箱の中に -1,2,-3,4,-5 の数が一つずつ書かれた五枚のカードが入っている。
    この箱の中から同時に3枚のカードを取り出すとき、取り出したカードに書かれた数の積が負の数となる確率を求めなさい。

    正の数になる場合の数の方が圧倒的に少なさそうだから、正の数になる確率を求めて1から引いてみるのが早さそう。
    正の数になるのは2と4が組み合わさった時と、-1,-3,4で合計が0になる時だけだね

  • 習ったことが無い問題です、解き方がわかりません

    Q.1個のさいころを4回投げるとき、6の目が1回でも出る場合とでない場合とでは、どちらの方が起こりやすいかを考え、その理由を説明しなさい。

  • >Q.1個のさいころを4回投げるとき、6の目が1回でも出る場合とでない場合とでは、どちらの方が起こりやすいかを考え、その理由を説明しなさい。

    でない場合の方が確率は計算しやすいね。
    でない方の確率がわかったら、1からその確率をひくと「1回でもでる確率」が算出できるはず

  • >樹形図をかくときのコツってありますか!?

    抜け漏れなく書こう!練習あるのみ

  • 質問する