【中2数学】平行四辺形の性質がわかる3つの証明

Sponsored Link

平行四辺形の性質の証明がよくわからん??

こんにちは!この記事をかいているKenだよ。パイナップルに埋もれたい。

 

平行四辺形の性質には次の3つがあったよね。

  • 2組の向かいあう辺はそれぞれ等しい
  • 2組の向かいあう角はそれぞれ等しい
  • 対角線はそれぞれ中点で交わる

 

こいつらはむちゃ便利だ。

だって、

「平行四辺形」だったら、

向かいあう辺・角が等しいっていえちゃうんだからね。

 

平行四辺形の性質 証明

 

しかも、対角線が中点でまじわるんだって。

 

平行四辺形の性質

 

こいつらを使えば、

Sponsored link

平行四辺形の問題なんて瞬殺さ!

もー、最高だね・・・・・・

 

 

 

だがしかし。

なんで「平行四辺形の性質」って使えるんだろう??

便利すぎて怪しい。

詐欺かって思うよね??

 

そこで今日は、

平行四辺形の性質の証明を解説して、

疑問を解消していこう!

 

 

平行四辺形の性質がわかる3つの証明

平行四辺形の性質を証明するには、

三角形の合同をつかうよ。

しかも、3組の合同を証明しなくちゃいけないんだ。

 

平行四辺形ABCDがあって、

対角線の交点をMとしよう。

 

平行四辺形の証明 性質
Sponsored link

 

 

このとき、△ABCと△ADCと、

 

平行四辺形の性質 証明

 

△ABDと△CDB、

 

平行四辺形の性質 証明

 

△ABMとCDMの合同を、

 

 

平行四辺形の性質 証明

 

を証明していくんだ。

こいつらの合同がいえれば、

平行四辺形の性質を証明できるってわけ。

順番にみていくよー

 

 

証明1. 「2組の向かい合う辺の長さは等しい」

まずは、平行四辺形の性質の、

2組の向かいあう辺の長さは等しい

を証明していこう。

 

  • △ABC
  • △CDA

の三角形の合同を証明していくよ!

 

平行四辺形の性質 証明

 

 

△ABCと△CDAにおいて、

四角形ABCDは平行四辺形だから、

AD // BC・・・・(1)

だね。

平行線の性質より錯角が等しいから、

角ACB = 角CAD・・・・(2)

になる。

 

平行四辺形の性質 証明

 

同じように、

AB // CDより、

Sponsored link

錯角が等しいから、

角BAC =  角DCA・・・・(3)

 

平行四辺形の性質 証明

 

んで、

辺ACは共通だから、

AC = CA ・・・・・(4)

になるね。

 

(2)、(3)、(4)より、

1組の辺とその両端の角がそれぞれ等しいから、

△ABC ≡ △CDA

になるね。

 

また、

対応する辺の長さが等しいから、

  • AB = CD
  • BC = DA

になる。

 

これで、平行四辺形の性質の、

「2組の辺の長さがそれぞれ等しい」

ってやつが証明できた。

 

平行四辺形の性質 証明

 

 

証明2. 「2組の向かい合う角の大きさがそれぞれ等しい」

つぎは2つめの、

2組の向かいあう角の大きさがそれぞれ等しい

の証明だ。

 

さっき証明した、

△ABC ≡ △CDA

をつかおう。

対応する角がそれぞれ等しいから、

角ABC = 角CDA・・・・(5)

ってことがいえる。

 

平行四辺形の性質 証明

 

△ABC と△CDAおなじように、

△ADCと△CBAの合同

も証明できる。※ここでは省略するね。

 

平行四辺形の性質 証明

 

こいつらでも対応する角が等しいから、

角BAD = 角BCD・・・・(6)

ってことがいえるんだ。

 

平行四辺形の性質 証明

 

(5)・(6)より、

  • 角A = 角C
  • 角B = 角D

がいえる。

よって、

2組の向かいあう角の大きさがそれぞれ等しい

っていう性質を証明できるんだ。

 

 

証明3. 「対角線は中点でまじわる」の証明

最後は、

対角線はそれぞれの中点で交わる

という性質を証明していくよ。

 

ここでは、

△ABMと△CMDの合同

を証明していくんだ。

 

平行四辺形の性質 証明

 

△ABMと△CMDにおいて、

さっき証明した、

「2組のむかい辺はそれぞれ等しい」

っていう性質をつかうと、

AB = CD ・・・・(1)

ってことがわかる。

 

AB//CDより、錯角が等しいから、

角BAM = 角DCM・・・・(2)

角ABM = 角CDM・・・・(3)

 

平行四辺形の性質 証明

 

(1)、(2)、(3)より、

1組の辺とその両端の角がそれぞれ等しいから、

△ABM  ≡ △CDM

になる。

よって、

対応する辺はそれぞれ等しいから、

  • AM = CM
  • BM = DM

になるよー!

 

平行四辺形の性質 証明

 

つまり、

平行四辺形の対角線は中点で交わるんだ。

 

おめでとう!

平行四辺形の性質を3つ証明できたね。

 

 

まとめ:平行四辺形の性質は三角形の合同の証明から!

平行四辺形の性質の証明はシンプル。

ぜーんぶ、

三角形の合同

からきているんだ。

合同な図形をしっかり見極めて、

ゆっくり証明していこう。

そんじゃねー

Ken

Sponsored Link

6 件の質問

  • 四角形ABCDでAD=BC 、AD へいこうBC ならば平行四辺形である
    というもんだいの解き方教えてください

  • 平行四辺形の証明が出来なくなっています。どうやるか教えてください。

  • >四角形ABCDでAD=BC 、AD へいこうBC ならば平行四辺形である
    というもんだいの解き方教えてください

    対角線BDを結んで、△ADBと△CBDで三角形の合同を証明してみよう。
    使うのは錯角かな

  • 質問ではないですが毎回すごい役立っています❗
    ありがとうございます

  • 無料で勉強の質問をする!