【一次関数の利用】動点の問題の解き方がわかる3ステップ

Sponsored Link

一次関数の利用で動点の問題がむずい??

こんにちは!この記事をかいているKenだよ。

 

一次関数の利用の問題ってムズい。

中でも、

動点の問題

が一番ヤッカイなんだ。たとえば、つぎのような問題だね。

 

 

今日はこの動点の問題をわかりやすく解説していくよ。

よかったら参考にしてみてね^_^

 

 

一次関数の利用の「動点」問題がわかる3つのステップ

問題のポイントは、

Sponsored Link

三角形の高さだけが変化していること

だ。

逆に、底辺はどんなに時が経っても動かない。

高さの変化をトラッキングすれば面積が計算できそうだね。

 

例題でいうと、

△APDの底辺ADは固定だね?

だって、AとDは動かないからさ。

Pの移動によって高さだけ変わっていくんだ。

一次関数の利用 動点 解き方

しかも、高さの変化は点が辺を移動するたびに変わっていくよ。

例題でいうと、動点Pが、

  • 辺AB
  • 辺BC
  • 辺CD

にそれぞれあるときの3パターンだね。

今日はこの3つのフェーズごとに解説していくよ。

 

 

フェーズ1. 点Pが辺AB上を動いているとき

PがAB上を動いている場合だ。

このとき、△APDの高さは、

APの長さ

だよね??

1次関数の利用 動点 問題

Pは1秒間にx cm動く。

APの長さはx秒後に「x cm」になっているはずだ。

Sponsored Link

よって、動点Pが辺AB上にあるとき(0 ≦ x ≦4)のとき、

△APDの面積は、

△APD = 底辺 × 高さ × 1/2
= 5 × x × 1/2
= 5/2 x

になるね。

ここまでの△APDの面積yの変化をグラフにしてみると、

こんな感じになる ↓↓

1次関数の利用 動点 問題

 

 

パターン2. 動点Pが辺BC上にある場合

つぎは点Pが辺BCにたどり着いたケース。

一次関数の利用 動点 問題

まだまだ動点Pの旅は続くんだ。辛いね。

 

PがBC上にあるときの△APDの高さって、

点Pから辺ADにおろした垂線になるよね?

垂線とADの交点をHとすればPHが高さってことだ。

一次関数の利用 動点 問題

じつはこの高さって、

動点Pが左らへんにいても、

一次関数の利用 動点

真ん中らへんにいても、

一次関数の利用 動点 問題

右のほうにいても、

Sponsored Link
一次関数の利用 動点 問題

変わらないんだ!

ぜんぶ辺AB・DCと同じ長さ(4cm)になるはず。

 

よって、動点Pが辺BC上にあるとき(4 ≦ x ≦ 9)、

1次関数の利用 動点 問題

△APD の面積 = 底辺AD × 高さ × 1/2
= 5 × 4  × 1/2
= 10[cm²]

になるね。

つまり、動点PがBC上にあるとき、

△APDの面積はつねに一定というわけさ。

変数xがはいっていないからね。

 

ここまで△APDの面積の変化をグラフにあらわすと、

こうなるね↓↓

1次関数の利用 動点

 

 

フェーズ3. 動点Pが辺CDにある場合

いよいよ最後のフェーズ。

Pが辺CDにさしかかった場合さ。

一次関数の利用 動点 問題

このときの△APDの高さって、

線分DPだよね?

一次関数の利用 動点

x秒後のDPの長さをだしてやれば、

△APDの面積yを式であらわせるってこさ。

 

このときの高さDPは、

「3つの辺(AB・BC・CD)」 – 「 Pが動いた距離」

で計算できるよ。

一次関数の利用 動点

(3つの辺の長さ)= 4 + 5 + 4
= 13 [cm]

になる。

 

そんで、x秒後に「Pが動いた距離」は、

x [cm]

だね。

一次関数の利用 動点 問題

ってことで、

DPの長さは(3つの辺の長さ)- (Pが動いた距離)で求めることができるので、

13 – x

になるね。

一次関数の利用 動点

よって、Pが辺CD上を動くとき(9 ≦ x ≦ 13)、

△APDの面積 = 底辺AD × 高さDP × 1/2
= 5 × (13-x) × 1/2
= 5/2 (13-x)

となる。

よって、こいつをグラフに表してやると、

こうなるね↓↓

1次関数の利用 動点

△APDの面積yをxであらわすことができて、

それをグラフにすれば完ぺきだ!

テストに出やすい問題だからしっかりおさえておこう^^

 

 

まとめ:一次関数の利用の動点は3つのフェーズにわけるべし

動点の問題はどうだった?

フェーズごとに面積の変化が異なる

ってことさえ押さえておけば十分さ。

あとは、

どの辺が底辺・高さになっているのか??

ということに注意してみてね。

そんじゃねー

Ken

Sponsored Link

13 件の質問

  • ここの問題とても苦手でしたがとてもわかりやすく少しわかるようになりました!ありがとうございます

  • すごくわかりやすいです!!
    一次関数すごく苦手なので、頑張ります!!

  • 「グラフ上に直線が二本あって交点をP、それでこのPが直線上を動く。△TOPを求めよ。」
    教えてください。

  • >グラフ上に直線が二本あって交点をP、それでこのPが直線上を動く。△TOPを求めよ。

    TとOがなんなのかわからん!

  • 無料で勉強の質問をする!