3分でわかる!多角形の外角の和の求め方

Sponsored Link

多角形の外角の和ってどうなるの??

こんにちは!この記事をかいているKenだよ。弾丸旅行にはまっているね。

 

多角形(n角形)の内角の和は、

180°×(n-2)

で計算できたね。

多角形の内角の和 公式

ここで、好奇心旺盛なヤツはこう思うはずだ。

 

そう。

そうだ。

多角形の外角の和はいくつになるんだろう!??

ってね。

Sponsored link

今日はそんな疑問にこたえるため、

多角形の外角の和の求め方をわかりやすく解説していくよ。

よかったら参考にしてみてね^^

 

 

超簡単!多角形の外角の和は○○度!

結論からさきにいっちゃおう。

多角形の外角の和(n角形)はずばり、

360°

だ。

多角形の外角の和

三角形の外角の和は360°。

四角形の外角の和も360°。

なんと、八十角形の外角の和も360°だ。。

いや、むしろ、

こんなんでも、

多角形の外角の和

あんなんでも、

Sponsored link
多角形の外角の和

外角の和は360°になっちゃうんだ。

 

だから、

外角の和を求めなさい!

っていう問題がでたら、ドヤ顔で、

360°ですけどなにか?

っていってやろう。

 

 

なぜ多角形の外角の和が360°になるのか証明しよう!

多角形の外角の和は360°ってことはわかった。

むちゃくちゃわかりやすいね。

 

ただ、ここで知っておいてほしいのは、

なぜ多角形の外角の和が360°になるのか??

ってことさ。

こいつを知っていると、

たぶん、

モテルね。

 

 

内角と外角をぜんぶたすといくつ??

たとえば、

n角形があったとしよう。

多角形の外角の和

1つの頂点に注目してみると、

gaikaku5

「内角」と「外角」で1つの直線になっているよね??

つまり、

内角 + 外角 = 180°

多角形の外角の和

になっているってわけさ。

Sponsored link

これは全頂点で同じことが言えるから、

内角と外角をぜーんぶ足し合わせたら、

180n

になるはずだ。

 

 

「内角と外角の和」から「内角の和」をひいてみる

「内角と外角の和」から「内角の和」をひいてやると、

「外角の和」になる。

多角形の外角の和

多角形の内角の和(n角形)は、

180(n-2)

だったよね??

よって、

多角形の外角の和

(内角と外角の和)- (内角の和)
= 180n – 180(n-2)
= 360°

になるね。

つまり、

多角形の外角の和(n角形)は、

360°になるんだ!

この数字にはnがふくまれてないから、

何角形でも外角の和は360°になるんだ^^

 

 

まとめ:多角形の外角の和は360°である。

多角形の外角の和はシンプル。

いつでも、

どんな多角形でも、

360°になるんだ。

テストで間違わないようにおぼえておこう!

そんじゃねー

Ken

Sponsored Link

44 個の質問と回答

  • これわぁ、どういぅ事ですかねぇ⁇

    外角の和はぁ、絶対にぃ360度にぃなるといぅ事ですかぁ⁇♡

  • 一つの外角の大きさが45°である正多角形の内角の和は何度ですか。

  • 三角形abcの 角aに隣接(表現がおかしいかもしれません)する外角は線分baを延長してbc側に1つと線分caを延長してab側にもう一つというように1つの内角につき2つ外角ができるため外角の和は360度ではなく720度になるのではいのでしょうか?

  • >三角形abcの 角aに隣接(表現がおかしいかもしれません)する外角は線分baを延長してbc側に1つと線分caを延長してab側にもう一つというように1つの内角につき2つ外角ができるため外角の和は360度ではなく720度になるのではいのでしょうか?

    いい質問だね。
    外角の定義が「多角形の一辺と、これと隣り合う一辺の延長とが成す角」だから、1つの角につき1辺の延長までってことだ!

  • >三角形3つの内角の和は360°ですか?

    180度だよ!もう一回公式で計算してみよう

  • ありがとうございます!
    めっちゃわかりやすいです!
    ですが、どうやってもっと簡単に
    覚える方法を教えてください!

  • >ありがとうございます!
    めっちゃわかりやすいです!
    ですが、どうやってもっと簡単に
    覚える方法を教えてください!

    公式の類は、使いまくって覚えるのが一番。
    手に公式を染み込ませよう

  • ありがとうございました〜
    とても参考になったです。( ^_^)/~~~

  • すごくわかりやすい解説でした(^ε^)-☆Chu!!
    Kenさん、いつもありがとうございます!!!

  • 凄く分かりやすかったです。!!
    質問です。
    5角形や7角形の角の先端はどうやって求めればいいですか? 
    (ちなみに5角形の形は星の形、7角形は凹んだ台形と凄い形をした4角形が重なった図形です)
    ヨロピーお願いします。

  • りーくん(さん?)の「入り組んでいだ多角形」って凹みのある多角形…?もしそうなら凹みのある部分が「内角+外角=180°」じゃなく「内角-外角=180°」になって外角の式は「普通の外角の和-凹んだ外角の和=360°」って感じといけなさそう
    ☆→144°×5-72×5=360°

  • >5角形や7角形の角の先端はどうやって求めればいいですか? 
    (ちなみに5角形の形は星の形、7角形は凹んだ台形と凄い形をした4角形が重なった図形です)

    星型の角度の求め方を読んでみて!

  • 「内角の和が1440°の多角形は何角形ですか」
    この問題の解き方を教えて!

  • 三角形の底辺の部分がへこんでいる(内側に突き出ている感じの)多角形は三角形ですか?
    また、へこんでるところの外側を外角として、それ以外の外側に突き出てる3つの角の内角の角度の合計がへこんでるところの外角の角度になるというのはなぜですかね?

  • 頂点を数えるといいよ。頂点の数が3つなら三角形だし4つなら四角形だ 

  • 質問する