三角形の内角の和の証明がわからん??
こんにちは!この記事をかいているKenだよ。天満宮にいきたいね。
三角形の内角の和は「180°」になる
って知ってた??
つまり、
中の角度をぜんぶ足すと180°になるってことさ。
これはこれで、
うわーすげーー
ってなるよね?笑
ただ、いちばん大切なのが、
なぜ、三角形の内角の和が180°になるのか??
ってことだ。
これを知っていればクラスでモテるかもしれない。たぶん。
そこで今日は、
三角形の内角の和の求め方の証明
を3ステップで解説していくよ。
よかったら参考にしてみて^^
三角形の内角の和の証明がわかる3ステップ
さっそく証明していこう。
三角形ABCをつかっていくよ。
Step1. 底辺を右にのばす
まずは底辺を右にすーっと伸ばしてみて。
三角形ABCでいうと辺BCだね。
こいつを右にのばして、
伸ばした先を、なんだろうな、Dとでもおこう。
これがはじめの一歩さ。
Step2. 平行線を1本ひく!
つぎに平行線を一本ひくよ。
伸ばした底辺の頂点を通る平行線をひいてみて。
向かい側の辺に平行な直線ね。
三角形ABCでいうと、
Cを通ってABに平行な直線だね。
そうだなあ、平行線の先をEとでもおこうか。
これが第2ステップ。
Step3. 平行線の性質を使う!
最後に平行線の性質をつかっちゃおう。
平行線の性質って、
- 同位角は等しい
- 錯角は等しい
の2つだったよね??
これを平行線でつかってやればいいんだ。
三角形ABCではABとCEが平行だったね。
錯角は等しいから、
角BAC = 角ACE
になる。
また、同位角をつかってやれば、
角ABC = 角ECD
になるね。
ここで、
頂点Cに注目してみて。
この頂点には
- a
- b
- c
という3つの角度があつまっているよね。
そんで、3つで1つの直線になっている。
ってことは、
ぜーんぶ足し合わせたら180°になるってことさ。
つまり、
a + b + c = 180°
ってことがいえるね。
「a + b + c」は三角形の内角をぜんぶたした和。
だから、
三角形の内角の和は180°になる
ってことが言えるのさ。
まとめ:三角形の内角の証明は平行線をつかえ!
三角形の内角の和の証明は、
平行な補助線をひくことがポイント。
ここさえできればあとはお茶の子さいさいさ。
テストにも出やすいからよく復習しておいてね^^
そんじゃねー
Ken
Qikeruで執筆しています。
「教科書、もうちょっとおもしろくならないかな?」
そんな想いで始めました。
平行線に錯角はなぜ等しいか
>平行線に錯角はなぜ等しいか
同位角と対頂角が等しいことを使うよ
確率の求め方を教えてください‼︎
>確率の求め方を教えてください‼︎
確率の求め方を読んでみて!