【中学数学】相似比の求め方がわかる3ステップ

Sponsored Link

相似比の求め方をおしえてほしい!!

こんにちは!ぺーたーだよ。

中学3年生で習う相似。

「相似」ってふつうに生活してたら耳にしないよね??

最初はだれもが「ん、相似ってなんだ?」ってなる単元だ。

この単元でいちばん出てくるのは、

相似比を求めるタイプの問題

なんだ。

 

今日はテストで問題が解けるように、

相似比の求め方を解説していくよ。

よかったら参考にしてみて。

Sponsored Link

 

=もくじ=

  1. そもそも相似・相似比ってなに?
  2. 相似比の求め方

 

 

そもそも相似・相似比ってなんだろう??

相似比の求め方を勉強する前に、まず、

相似とはなにか??

を復習してみようか。

 

相似な図形とはずばり、

1つの図形の形を変えずに大きくしたり小さくした図形のことだよ。

 

たとえば、ある△ABCをビックライトでむちゃくちゃでかくした。

その結果、

△DEFができたとしよう。

 

相似比 求め方

 

このとき、△ABCと△DEFは相似な図形である

っていえるんだ。

なぜなら、2つの三角形は拡大・縮小の関係にあるからね。

 

んで、相似比っていうのは、

相似な図形の対応する辺の比

のことなんだよ。

たとえば、△ABCと△DEFの例だったら、

  • AB:DE
  • BC:EF
  • AC:DF

が相似比なんだ。

 

相似比 求め方

 

さあ、今回はこの相似比を求め方を解説していくよ。

Sponsored Link

 

 

相似比の求め方がわかる3つのステップ

相似比の求め方はつぎの3つのステップだよ。

  1. 対応する頂点をさがそう
  2. 対応する辺の長さを確かめよう
  3. 比にしてみよう

 

練習問題をいっしょにといてみよう。

 

練習問題

下の2つの三角形は相似である。相似比を求めよ。

相似比 求め方

 

 

Step1. 図形を頭の中で回転させよう

まず相似な図形の向きをそろえよう。

対応する頂点・辺がかさなるように回転させればいいんだよ。

 

練習問題をみてみよう。

このままだと対応する辺が見つけにくくない?

その理由は、三角形の向きが同じじゃないからだ。

だから、2つの三角形の向きを同じにしてあげよう!

 

△DEFを左にぐるっとまわしてやればいいのさ。

そうするとこうなるよ。

 

相似比 求め方

 

これで対応する辺がみつけやすくなったね^^

 

 

Step2. 対応する辺の長さを確かめる

つぎは、対応する辺の長さを確認してみて。

相似比は、

対応する辺の長さの比

だったよね??

 

だから、相似比を求めるためには、

Sponsored Link

2つの対応する辺の長さ

を知る必要があるわけ。

 

練習問題でいうと、

  • 辺AB
  • 辺DE

が対応する辺だね。

相似比 求め方

 

こいつらの長さはそれぞれ、

  • 辺AB = 5
  • 辺DE = 15

になってるね!

 

 

Step3. 相似比を求める

あとは相似比を求めるだけ。

相似比は、

対応する辺の長さの比

だったよね??

 

だから、もし、2つの相似な図形があったら、

対応する辺1 : 対応する辺2

の比を求めればいいわけ。

 

練習問題でいうと、△ABCと△DEFの相似比は、

AB : DE

を求めればいいね。

なぜなら、

この2つの辺が対応する辺同士だからね。

 

  • 辺AB = 5
  • 辺DE = 15

だったから、

AB : DE
= 5: 15
= 1: 3

になる。

これが2つの三角形の相似比なんだ。

相似比 求め方

答えるときは一番簡単な整数で答えるよ。

そこだけ注意してね!

他の辺で計算しても1:3になるから安心して。

 

 

まとめ:相似の比の求め方は向きをそろえろ!

図形の相似比を求めるには回転させるのがカギ!

頭の中で回転させるイメージ力が必要。

回転させたらノートの余白に描いちゃおうね。

目ですぐに確かめられるから、解く時間を減らすこともできるよ。

相似比は基本的なことだからやり方覚えておいてね。

じゃ、また今度!

ぺーたー

Sponsored Link

23 件の質問

  • あるクラスの一学期の女子生徒の数はクラスの人数の5分の3に8人足りませんでした。
    2学期から男子が2人、女子が2人転校してきて女子生徒の数はクラスの7分の4になりました。
    クラスの人数は何人になりましたか?
    の求め方を教えてください。お願いします。

  • >あるクラスの一学期の女子生徒の数はクラスの人数の5分の3に8人足りませんでした。
    2学期から男子が2人、女子が2人転校してきて女子生徒の数はクラスの7分の4になりました。
    クラスの人数は何人になりましたか?

    転校してくる前のクラスの人数をx人としよう。
    そして、転校前の女子の人数をxで表して、そこに女子が2人転校してきて増えた時に、
    四人増えたクラス全体の7分の4に等しいっていう等式を作ればいいよ

  • >円の相似比についても教えてください。

    円も求め方は一緒だよ!
    半径がわかってたら、
    半径の2乗の相似比になるはず!

  • >角の大きさが違っても相似は求められますか?

    相似条件を満たしてないと相似な図形とは言えないので注意しよう。
    相似な図形は角度は等しいはず

  • 次の比をもっとも簡単な整数の比で表せ。
    という問題なんですけど、0.32:0.52は
    どのように表すことができますか?

  • >0.32:0.52

    それぞれ100倍してあとは、4で割って約分すればいいんじゃないかな

  • 三角形AとBは相似で、
    三角形Aの中の三角形cを引いた 三角形Aーc:三角形B
    ってどうやって考えますか?

  • >三角形AとBは相似で、
    三角形Aの中の三角形cを引いた 三角形Aーc:三角形B
    ってどうやって考えますか?

    うーん、三角形Cにもよるかな。問題送ってみて

  • 中点連結定理を使った応用問題の解き方を教えて下さい、基礎は出来る自信はありますがこの図形のどこが並行かというのが線が多すぎて見分けがつきません、何かコツとかありますか?

  • >中点連結定理を使った応用問題の解き方を教えて下さい、基礎は出来る自信はありますがこの図形のどこが並行かというのが線が多すぎて見分けがつきません、何かコツとかありますか?

    中点連結定理は応用問題では、三角形の辺の中点を結んだ隠れててわかりにくい線分を見つけるのが鍵かな。
    混乱してきた時は、問題の図形に平行とか中点とかの矢印を付けていくといいね

  • 無料で勉強の質問をする!