【計算公式】正四角錐の体積の求め方がわかる3ステップ

Sponsored Link

正四角錐の体積の求め方の公式って??

こんにちは!この記事をかいているKenだよ。青い空が好きだね。

 

正四角錐の体積の求め方には公式があるんだ。

正四角錐って底面が正方形で、先がとんがっている立体のことだったよね。

正四角錐 表面積 求め方

 

底面の1辺の長さをa、高さをhとすると、体積はつぎのようにあらわせるよ。

1/3 a^2h

正四角錐 体積 求め方 公式

つまり、

(底辺の1辺)×(底辺の1辺)×(正四角錐の高さ)÷3

ってことだね。

Sponsored Link

今日は、この計算公式をどうやって使うのか??

ということをわかりやすく解説していくよ。

 

 

正四角錐の体積の求め方がわかる3つのステップ

正四角錐の体積は3つのステップで計算できちゃうんだ。

 

例題をときながらみていこう!

 

例題

底辺の1辺の長さが6 [cm]、高さが8 [cm]の正四角錐の体積を求めてください。

正四角錐 体積 求め方 公式

 

Step1. 底面積を計算するっ!

まずは正四角錐の底面積を求めてみよう。

正四角錐の底面は「正方形」だよね?? 正方形の面積を「1辺×1辺」という公式をつかって計算してくれ。

正四角錐 体積 求め方

例題でいうと、

底面の正方形の1辺は6[cm]だよね。だから、底面積は、

6×6 = 36[cm^2]

になる。

 

Step2. 正四角錐の高さをかけるっ!

さっき計算した底面積に「高さ」をかけてみよう!

 

例題の正四角錐の高さは8 [cm]だから、

36×8

= 288[cm^3]

になるね。

正四角錐 体積 求め方 公式
Sponsored Link

計算ミスに気をつけてね^^

 

Step3. 最後に1/3をかける

底面積に高さもかけたし・・・

と安心してはダメ。

先がとんがっているタイプの「錐体」では、体積を求めるときに必ず「1/3」をかけなきゃいけないんだ。

えっ。なぜ1/3をかけるのかって??

それは円錐の体積の求め方でも触れたけど、

高校数学でならう「積分」を使わないと説明できないんだ。

だから、中学数学ではとりあえず、

先がとんがっている立体の体積の計算は「底面積×高さ×1/3」になる

って覚えておけば問題ないよ。

円錐 体積 求め方 公式

 

 

だから例題の正四角錐の体積は、

6×6×8×1/3

= 96[cm^3]

になるんだ。

正四角錐 体積 求め方 公式

 

おめでとう!これで正四角錐の体積を計算できたね^^

 

 

まとめ:正四角錐の体積の求め方も大丈夫!

正四角錐の体積の公式はどうだった??

底面積×高さ×1/3

という計算をゆっくりしてみてね。テスト前に復習しておくと心強いかも!

Sponsored Link

そんじゃねー

Ken

Sponsored Link

2 件のコメント

  • 無料で勉強の質問をする!

    ※メールアドレスが公開されることはありません